Theoretical Simulation of n-Alkane Cracking on Zeolites

نویسندگان

  • Joseph A. Swisher
  • Niels Hansen
  • Theo Maesen
  • Frerich J. Keil
  • Berend Smit
  • Alexis T. Bell
چکیده

The kinetics of alkane cracking in zeolites MFI and FAU have been simulated theoretically from first principles. The apparent rate coefficient for alkane cracking was described as the product of the number of alkane molecules per unit mass of zeolite that are close enough to a Brønsted-acid site to be in the reactant state for the cleavage of a specific C-C bond and the intrinsic rate coefficient for the cleavage of that bond. Adsorption thermodynamics were calculated by Monte Carlo simulation and the intrinsic rate coefficient for alkane cracking was determined from density functional theory calculations combined with absolute rate theory. The effects of functional, basis set, and cluster size on the intrinsic activation energy for alkane cracking were investigated. The dependence of the apparent rate coefficient on the carbon number for the cracking of C3-C6 alkanes on MFI and FAU determined by simulation agrees well with experimental observation, but the absolute values of the apparent rate coefficients are a factor of 10 to 100 smaller than those observed. This discrepancy is attributed to the use of a small T5 cluster representation of the Brønsted-acid site. Limited calculations for propane and butane cracking on MFI reveal that significantly better agreement between prediction and observation is achieved using a T23 cluster for both the apparent rate coefficient and the apparent activation energy. The apparent rate coefficients for alkane cracking are noticeably larger for MFI than FAU, in agreement with recent findings reported in the experimental literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.

The location of Brønsted acid sites within zeolite channels strongly influences reactivity because of the extent to which spatial constraints determine the stability of reactants and of cationic transition states relevant to alkane activation catalysis. Turnover rates for monomolecular cracking and dehydrogenation of propane and n-butane differed among zeolites with varying channel structure (H...

متن کامل

Catalytic Alkylation Routes via Carbonium-Ion-Like Transition States on Acidic Zeolites

Brønsted acid sites in zeolites catalyze alkene hydrogenation with H2 via the same kinetically-relevant (C-H-H) + carboniumion-like transition states as those involved in monomolecular alkane dehydrogenation. Reactions between C3H6 and H2 selectively form C3H8 (>80% carbon basis) at high H2/C3H6 ratios (>2500) and temperatures (>700 K). Ratios of C3H8 dehydrogenation to C3H6 hydrogenation rate ...

متن کامل

Entropy considerations in monomolecular cracking of alkanes on acidic zeolites

Compensation between adsorption entropies and enthalpies results in less than a two-fold variation in adsorption equilibrium constants for C3–C6 alkanes at temperatures relevant for monomolecular cracking; the size-independent activation energy for C–C bond activation in C3–C6 alkanes indicates that the marked increase in monomolecular cracking turnover rates observed with alkane chain size ref...

متن کامل

Catalytic hydrogenation of alkenes on acidic zeolites: Mechanistic connections to monomolecular alkane dehydrogenation reactions

Brønsted acid sites in zeolites (H-FER, H-MFI, H-MOR) selectively hydrogenate alkenes in excess H2 at high temperatures (>700 K) and at rates proportional to alkene and H2 pressures. This kinetic behavior and the De Donder equations for non-equilibrium thermodynamics show that, even away from equilibrium, alkene hydrogenation and monomolecular alkane dehydrogenation occur on predominantly uncov...

متن کامل

The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis.

Acidic zeolites are indispensable catalysts in the petrochemical industry because they select reactants and their chemical pathways based on size and shape. Voids of molecular dimensions confine reactive intermediates and transition states that mediate chemical reactions, stabilizing them by van der Waals interactions. This behavior is reminiscent of the solvation effects prevalent within enzym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010